
Digital Signal Processing 21 (2011) 517–521
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

A novel algorithm for all pairs shortest path problem based on matrix
multiplication and pulse coupled neural network

Yudong Zhang ∗, Lenan Wu, Geng Wei, Shuihua Wang

School of Information Science and Engineering, Southeast University, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 21 March 2011

Keywords:
All pairs shortest path
Pulse coupled neural network
Matrix multiplication
Parallel algorithm

All pairs shortest path (APSP) is a classical problem with diverse applications. Traditional algorithms are
not suitable for real time applications, so it is necessary to investigate parallel algorithms. This paper
presents an improved matrix multiplication method to solve the APSO problem. Afterwards, the pulse
coupled neural network (PCNN) is employed to realize the parallel computation. The time complexity of
our strategy is only O (log2 n), where n stands for the number of nodes. It is the fastest parallel algorithm
compared to traditional PCNN, MOPCNN, and MPCNN methods.
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1. Introduction

Given a directed graph G = 〈V , E〉 and a length function ω :
E → R , the “all pairs shortest path” problem, APSP in short, is to find
the length of the shortest path between any two nodes (a length
of a path is defined as the sum of its edge lengths). APSP is a
classical problem with diverse applications today. For example, the
vehicle routing problem (VRP) seeks to service a number of cus-
tomers with a fleet of vehicles, which is an important problem in
the fields of transportation, distribution and logistics [1]. Job shop
scheduling (JSS) is an optimization problem in which ideal jobs
are assigned to resources at particular times [2]. Traveling sales-
man problem (TSP) is a problem in combinatorial optimization in
which a shortest tour is designed to visit each city exactly once [3].
Other applications include website page searching, abstract state
machine, plant and facility layout, and VLSI design [4].

The APSP is an old problem. The first algorithm is due to Dijk-
stra [5]. Small improvements were made to this algorithm, mostly
using sophisticated data structure [6]. All of them did not improve
the O (n3) upper bound. Fredman’s algorithm is o(n3), but its ex-
ponent is still 3 [7].

These traditional algorithms have major shortcomings: firstly,
they are not suitable for networks with negative weights of the
edges, i.e., in communication networks, the link weights represent
the transmission line capacity and negative weights correspond to
links with gain rather than loss. Secondly, the algorithms search
only for the shortest route, but cannot determine any other closer-
optimal solutions. Thirdly, they exhibit high computational com-
plexity for real-time communications involving rapidly changing
network topologies such as wireless ad hoc networks [8].
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Hence, artificial neural network (ANN) has been applied for
solving the APSP problem, since ANN’s intrinsic property in solving
large-scale problem parallel. The original work was done by Hop-
field [9]. From then on, a great many of works has been done in
the field of solving APSP with ANN [10]. However, there exist some
major drawbacks in Hopfield networks and other ANN, which are
listed as: 1) Invalidity of the obtained solutions. 2) Trial-and-error
value process of the network parameters. 3) Low computation effi-
ciency [11].

Pulse coupled neural network (PCNN) is a result of research on
artificial neuron model that was capable of emulating the behav-
ior of cortical neurons observed in the visual cortices of animal.
According to the phenomena of synchronous pulse burst in the
cat visual cortex, Eckhorn developed the linking field network.
Since it does not need to pre-train, and inherits the advantages
of ANN, PCNN has been used for various applications, such as im-
age denoising [12], image thinning [13], image fusion [14], image
segmentation [15], and pattern recognition [16], etc.

In Caulfield’s work [17], PCNN is structured in such a way, that
each point in the geometric maze figure corresponds to a neu-
ron in the network, and the autowave in the PCNN travels from
each neuron to its neighborhood neuron(s) along the maze from
iteration to iteration of the network. Hence, it requires a great
many of PCNN neurons to present only one edge. Qu [18] sim-
plified the structure proposed by Caulfield, and advanced a Multi-
Output PCNN model (MOPCNN) where each neuron in the network
correspond to a node in the graph, namely, only one neuron to
present an edge. However, the time consummation of each neu-
ron is too large to practically application, and the algorithm is not
quite suitable for continuous SP. Wang [19] proposed a modified
PCNN (MPCNN), and applied the MPCNN to shortest path, but the
algorithm needs large memory storage.

http://dx.doi.org/10.1016/j.dsp.2011.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:zhangyudongnuaa@gmail.com
http://dx.doi.org/10.1016/j.dsp.2011.02.004


518 Y. Zhang et al. / Digital Signal Processing 21 (2011) 517–521
Fig. 1. A small directed graph and its one-step distance matrix: (a) The graph; (b) One-step distance matrix.
This study also employed the PCNN, but the basic idea is total
different. We proposed a novel parallel algorithm to solve APSP by
matrix multiplication, and then PCNN was employed to simulate
the matrix multiplication method. The strategy can be done within
O (log2 n), where n represents the number of nodes.

The structure of rest is organized as follows: Section 2 presents
the basic concept of matrix multiplication was used for solving
APSP problems, and proposed two acceleration strategies for im-
provement. Section 3 discusses how to use PCNN to simulate the
matrix multiplication method. Besides, a simplified PCNN was pro-
posed. Section 4 gives the experimental results, and compares our
proposed method to PCNN, MOPCNN, and MPCNN. The results
show the time complexity of our algorithm is the least. Final Sec-
tion 5 is devoted to conclusion.

2. Matrix multiplication for APSP

Matrix multiplication is a classical method for solving the APSP
problem. It is not eye-catching since it does not suit well for serial
compute model. However, we find it efficient in the parallel neural
network [20].

2.1. Traditional method

Suppose R represents the one-step distance matrix. Rij , that
lies at row i and column j, stands for the minimum distance from
node i to node j within no more than one step. Fig. 1(a) shows a
small directed graph, and Fig. 1(b) shows the corresponding one-
step distance matrix.

Define a new matrix multiplication as follows. Suppose “+” as
the minimum operation, “×” as addition. Then

R2
i j = (R • R)i j =

∑
k

Rik × Rkj = min
k

(Rik + Rkj) (1)

It is obvious that Rii = 0 (∀i). Hence, R2 = R • R stands for the
two-steps distance matrix, and R2

i j represents the minimum dis-
tance from node i to node j within no more than two steps. This
is the same as R3, R4, . . . , Rn , where n represents the number of
nodes in the graph. It is obvious that Rn is the solution for APSP
problem, since the nodes covered by the shortest path is no more
than n [21].

2.2. Improvement I: Square method

If we want to attain Rn , it needs n − 1 times of matrix multi-
plication. Can it be accelerated?

Lemma 1. Our defined matrix multiplication still obeys the associative
law.

Proof. Suppose there are 3 matrices: A, B , and C . The number of
columns of A is equal to that of rows of B . The number of columns
of B is equal to that of rows of C . It is obvious that
Index Cost
(1,2,3,4,5,6,7,8) (11,9,3,4,10,8,6,2)

(2,3,6,8) (9,3,8,2)

(3,8) (3,2)

(8) (2)

Fig. 2. A simple example of minimum selection.

[
(AB)C

]
i j = min

n

[
(AB)in + Cnj

] = min
n

[
min

m
(Aim + Bmn) + Cnj

]

= min
m

[
min

n
(Aim + Bmn + Cnj)

]
(2)

[
A(BC)

]
i j = min

m

[
Aim + (BC)mj

] = min
m

[
Aim + min

n
(Bmn + Cnj)

]

= min
m

[
min

n
(Aim + Bmn + Cnj)

]
(3)

Hence, (AB)C = A(BC). �
Then, the times of matrix multiplication for attaining Rn can be

reduced to only log(n). This idea—square method—is depicted as
follows: Firstly, we construct the one-step distance matrix R . Then,
we attain R2 by R × R , attain R4 by R2 × R2, attain R8 by R4 × R4.
Repeat this process until attaining Rn . If n is not a power of 2,
then suppose m is the minimum integer that is large than n and
is a power of 2. We attain Rm instead of Rn by aforementioned
processing.

2.3. Improvement II: Minimum selection

It takes O (n) time to select the minimum from a list of non-
negative numbers. However, it can be accelerated by a basic tech-
nique. For simplicity n is assumed as a power of 2. Suppose that
the list is c(1), c(2), . . . , we go through a tournament under the
rule that if c(i) < c(i + 1) for an odd i, then i is chosen as a win-
ner for the next stage, or i + 1 otherwise. It reduces the O (n) time
to only log(n) time via this technique. Fig. 2 shows a simple exam-
ple for n = 8.

3. Parallel computation by PCNN

Although the improved matrix multiplication method can has-
ten the procedures greatly, it still needs large time and memory
resource. Here we discuss how to use PCNN to realize the strategy
in a parallel way.

3.1. Introduction to PCNN

A typical neuron of PCNN consists of 3 parts: the receptive
fields, the modulation fields, and the pulse generator. It is shown
in Fig. 3.

Suppose N is the total number of iterations and n is current it-
eration, the neuromime of PCNN can be described by the following
equations.
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Fig. 3. Neuromime of PCNN.
Fig. 4. The novel structure of a neuron for matrix multiplication.

Fij[n] = exp(−αF )Fij[n − 1] + V F

∑
mijklYkl[n − 1] + Ii j (4)

Li j[n] = exp(−αL)Li j[n − 1] + V L

∑
ωi jklYkl[n − 1] (5)

Uij[n] = Fij[n](1 + βLi j[n]) (6)

Yij[n] =
{

1, Uij[n] > θi j[n − 1]
0, Uij[n] � θi j[n − 1] (7)

θi j[n] = exp(−αθ )θi j[n − 1] + V θ Yij[n − 1] (8)

Here the (i, j) pairs present the position of neuron. F , L, U , Y , and
θ are feeding inputs, linking inputs, internal activity, pulse output,
and dynamic threshold, respectively. αF , αL and αθ are time con-
stants for feeding, linking and dynamic threshold. V F , V L and V θ

are normalizing constants, M and ω are the synaptic weights, and
Ii j and J i j are external inputs. β is the strength of the linking.

The whole working process is as follows: if there is a pulse
fired, then the threshold θ will increase such that there will be no
output during the next step. Therefore the threshold will exponen-
tially decrease until it becomes smaller than the inner activity U ,
so that there will be another pulse fired. The above processes cycle
all the time.

3.2. Simplified PCNN

In order to realize matrix multiplication based on PCNN, tradi-
tional PCNN was simplified. Fig. 4 shows the novel structure of the
simplified neuron.

The n by n neurons are disposed in the grids of a 2D plane.
The neuron lying at row i, column j, and the kth cycle, stands for
the shortest path from node i to node j within no more than 2k

steps. The initialization of PCNN is done by setting the values of
each neuron as the corresponding value of one-step distance ma-
trix. Then after each cycle, the corresponding matrix is the square
of itself at last cycle. Since it only takes log(n) time for matrix
multiplication, and log(n) time to attain the minimum from a spec-
ified list, the computational complexity of our proposed algorithm
based on PCNN and matrix multiplication is only O (log2 n).
Fig. 5. A small symmetric network: (a) Graph; (b) R; (c) R2; (d) R4.

4. Experiments

To verify the theoretical results and the effectiveness of the pro-
posed algorithm, several experiments have been carried out on the
platform of P4 IBM with 3 GHz main frequency and 2 GB memory,
running under Windows XP operating system. The algorithm was
developed via Matlab 2010a.

4.1. A symmetric graph

The first is based on a symmetric weighted graph with 4 nodes
and 5 edges, as shown in Fig. 5(a). It takes only 2 steps to obtain
the final result. Figs. 5(b–d) show the results of each step. Fig. 5(b)
is the original one-step distance matrix generated by PCNN initial-
ization. Fig. 5(c) is the results of the first cycle of PCNN. Fig. 5(d)
is the results of the second cycle.

Let us trace the change of neuron at row 2 and column 3. It
corresponds to the distance from node 2 to node 3 in Fig. 5. Its
value is 7 at the initialization stage. After the first cycle, its value
decreased to 6, since PCNN has found a two-step route: 2-4-3. An-
other example is the neuron at row 1 column 3. Its value is 9 at
the initialization stage. However, after 2 cycles, its value drops to 8,
since PCNN has found a three-step route: 1-2-4-3.

4.2. An asymmetric graph

The second experiment is to find the shortest path of an asym-
metric graph, which is shown in Fig. 1. There are 8 nodes and 24
edges in the graph. The results of each cycle are shown in Fig. 6.
Only three steps can get the shortest path between any two nodes
in the graph.

4.3. Time comparison

Suppose there are n nodes in the graph and the furthest length
from one node to another node is S—usually n2 � S , Table 1
shows the differences of our algorithm and other PCNN based al-
gorithms, indicating that the proposed method costs more space
than MOPCNN method but much less space than both PCNN and
MPCNN method. Moreover, the time complexity of the proposed
algorithm is the most least.
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Fig. 6. Results of each step of Fig. 1: (a) R; (b) R2; (c) R4; (d) R8.
Table 1
Comparison of our proposed algorithm and others.

Algorithm No. of neurons Time complexity

PCNN [17] S O (S2)

MOPCNN [18] n O (n × S)

MPCNN [19] S O (S2)

Proposed method n2 O (log2 n)

5. Conclusions

In this study, we presented an improved algorithm based on
matrix multiplication to solve APSP problem. Besides, we discuss
the realization by a simplified PCNN. The computational com-
plexity of our proposed algorithm is only O (log2 n) for parallel
computational model. It is a deterministic method which would
guarantee the globally solutions. The shortest paths of all pairs
are attained by running the network only once. The highly par-
allel computation of our proposed algorithm can be realized with
VLSI. It is easy to extend this algorithm to other cases.
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